
TEA Tutorial

April 25, 2016

1 An IPython Introduction to Using TEA for C. elegans re-
searchers

All of the code below was written by David Angeles-Albores. Should you find any errors, typos, or just have
general comments, please contact:

dangeles at caltech dt edu
The work here was submitted and accepted for publication on Please cite Tissue Enrichment

Analysis for C. elegans Genomics if this notebook was useful for you in your research.
Please note: I have tried to make this tutorial as complete as possible, with a brief introduction to Pandas

dataframes and showing how I typically prepare my dataframes for analysis. Experienced users will want to
skip this and go straight to Calling TEA. However, this tutorial is by no means a complete introduction
to Python or Pandas - in fact, it’s more like a super fast crash course. I apologize for this, and in the future
I will consider improving the tutorial.

1.0.1 Best of Luck!

– David Angeles-Albores

2 Introduction

2.0.1 What is TEA meant for?

TEA is meant to provide straightforward analysis of large gene lists for C. elegans researchers. We hope that
TEA will function as a hypothesis generator, or alternatively, as a way of understanding the biology behind
a dataset.

2.0.2 How is TEA different from GO?

Great question. GO is primarily a molecular/cellular ontology, whereas TEA works from TO, the C. elegans
tissue ontology. I believe tissues are, in some senses, fundamental units in biology. Often, it is the case that
tissues, not cells, have been studied for considerably longer time, and as a result we have a better intuition
for what the function of a tissue is, as compared to the molecular function of a list of genes. In other words, I
think GO analysis and TEA are similar, but my guess is that the results from TEA will be easier to interpret,
and as a result easier to use for hypotheiss generation.

2.0.3 What TEA is not:

TEA is NOT meant to be used as a quantitative tool!
At best, TEA is a very good guess about what tissues are being affected in your dataset. At worst,

TEA is a guess about what tissues are being affected in your dataset. TEA is working directly from the
WormBase-curated expression dataset. As a result, we have the very best, most up to date annotations in
the world. On the other hand, please remember these annotations suffer from bias. For example, the ASE,
ASK and ASI neurons have been very well studied and are quite well annotated, but the individual intestinal

1

cells have not been generally well studied! Thus, our annotations are significantly biased by the research
community’s interests.

Please use TEA carefully, and always use it as a guiding tool for your research, and never as the final
say on anything.

2.0.4 What do you need to do to run this tool?

The gist of the algorithm is:
Get your gene list into WBIDs
Call our analysis function
Call the plotting function
Done.

2.1 Batch users:

This script runs on Python > 3.5.
Dependencies: scipy (all), pandas, numpy, matplotlib and seaborn
If you have pip, do

pip install tissue_enrichment_analysis

to install the library in your computer.
Import the module. You may find that the numpy and pandas modules are also often very useful.
For the purposes of this journal, the file structure I’m working with is the following:
src - the folder this file lives in input - a folder that contains all my input files. Also contains
Engelmann - folder containing the files i will be using

In [6]: import tissue_enrichment_analysis as tea #the main library for this tutorial

import pandas as pd

import os

import importlib as imp

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

#to make IPython plot inline, not req’d if you’re not working with an Ipython notebook

%matplotlib inline

Now let’s import our dataset. Here, I will use a dataset I obtained from Engelmann et al, 2011 (PLOS
One).

Specifically, this is data from an RNA-seq experiment they performed. Briefly, young adult worms were
placed in D. coniospora fungus for 24, cleaned and then RNA-seq’ed.

In [19]: dfDcon= pd.read_csv(’../input/Engelmann/coniospora_Engelmann_2011.csv’) #Don’t forget to change the path in your script!

Let’s visualize the first five lines of the dataframe to see what’s in it

In [20]: print(’This dataframe has {0} columns and {1} rows’.format(dfDcon.shape[1], dfLum.shape[0]))

dfDcon.head()

This dataframe has 9 columns and 27322 rows

Out[20]: GenePublicName SequenceNameGene SequenceNameTranscript DC OP50 \
0 2L52.1 2L52.1 2L52.1 0,080068 0,07456

1 2RSSE.1 2RSSE.1 2RSSE.1 0,639852 0,586729

2 2RSSE.2 2RSSE.2 2RSSE.2 0,080266 0,081083

2

3 3R5.1 3R5.1 3R5.1 0,270145 0,209694

4 nas-6 4R79.1 4R79.1a 0,000617 0,000749

Ratio DCvsOP50 log2 Ratio DCvsOP50 Infection upregulated \
0 1.073868970660 0.102818 NaN

1 1.090540948206 0.125044 NaN

2 0.989921488245 -0.014614 NaN

3 1.288281972779 0.365448 NaN

4 0.824236379271 -0.278870 NaN

Infection downregulated

0 NaN

1 NaN

2 NaN

3 NaN

4 NaN

Ok. Clearly we can see the dataframe has a few different columns. Of particular interest to use are
the columns ‘Infection upregulated’ and ‘Infection downregulated’, since these are the genes they identified
as significantly altered by the treatment relative to an OP50 control. Let’s analyze the genes that are
upregulated first and see what they can do.

Before we can analyze anything, notice that they don’t list WBIDs anywhere. We need to turn the names
into WBIDs before we can continue.

To do this, I will load another file containing all the WBID-human readable relationships into a new
dataframe called names

In [21]: names= pd.read_csv(’../input/Engelmann/c_elegans.PRJNA13758.WS241.livegeneIDs.unmaprm.txt’,

sep= ’\t’,comment= ’#’)

Let’s take a look at it:

In [22]: print(’The length of this dataframe is:{0}’.format(len(names)))

names.head()

The length of this dataframe is:46788

Out[22]: WBID HumanReadable GeneName

0 WBGene00000001 aap-1 Y110A7A.10

1 WBGene00000002 aat-1 F27C8.1

2 WBGene00000003 aat-2 F07C3.7

3 WBGene00000004 aat-3 F52H2.2

4 WBGene00000005 aat-4 T13A10.10

The Engelmann names look like they are GeneNames.
Next, I’m going to generate a lambda function. This function will take a single argument ‘x’. ‘x’ should

the be the column containing the names we want to convert into WBIDs. Once we provide ‘x’, this function
will look in the GeneName column of the names dataframe to see whether a particular entry can be found
in the GeneName column.

For every entry it can find, g returns True. Else, it returns False

In [23]: g= lambda x: (names.GeneName.isin(x))

Let’s try our new function out!

3

In [24]: #Remember, dfLum is the dataframe. dfLum[’SequenceNameGene’] is the column we want.#

#We store the result in a variable called ’translate’

translate= g(dfDcon[’SequenceNameGene’])

#I only want to show the first 5 rows, so I’m going to add [0:5] after translate, since ’g’ returns a Series object

print(translate[0:5])

0 True

1 True

2 True

3 True

4 True

Name: GeneName, dtype: bool

Great! Now we can get the WBIDs by simple indexing:

In [25]: wbids= names[translate].WBID # names[translate] gets rows for every gene name that was found by ’translate’

#The .WBID after names[] tells the computer to get the WBID colum

In [26]: print(’wbids has {} gene IDS. The original dataframe has {} genes’.format(len(wbids), dfLum.shape[0]))

wbids.head() #let’s see what we found

wbids has 19702 gene IDS. The original dataframe has 27322 genes

Out[26]: 0 WBGene00000001

1 WBGene00000002

2 WBGene00000003

3 WBGene00000004

4 WBGene00000005

Name: WBID, dtype: object

Hmmm. We lost quite a few genes. Let’s quickly check to make sure those aren’t important

In [27]: not_found= dfDcon[~dfDcon.SequenceNameGene.isin(names[translate].GeneName)]

not_found.head()

Out[27]: GenePublicName SequenceNameGene SequenceNameTranscript DC \
2 2RSSE.2 2RSSE.2 2RSSE.2 0,080266

7 6R55.1 6R55.1 6R55.1a 1,6612

8 6R55.1 6R55.1 6R55.1b 1,66481

197 B0212.6 B0212.6 B0212.6 0,015785

416 B0310.4 B0310.4 B0310.4 0

OP50 Ratio DCvsOP50 log2 Ratio DCvsOP50 Infection upregulated \
2 0,081083 0.989921488245 -0.014614 NaN

7 1,38576 1.198764576839 0.261548 NaN

8 1,38919 1.198403386146 0.261114 NaN

197 0,007612 2.073554738456 1.052106 1.0

416 0 NaN NaN NaN

Infection downregulated

2 NaN

7 NaN

8 NaN

197 NaN

416 NaN

4

A quick search in WormBase shows that these genes have been merged into other genes. Hmmmm.. This
could be a problem.

To figure out if it really is a problem, let’s look at how many of those genes are upregulated during
infection.

In [28]: print(’There are {0} upregulated genes, of which {1} can\’t be found in the names dictionary’.format(

dfDcon[dfDcon.Infection_upregulated == 1].shape[0], not_found[not_found.Infection_upregulated == 1].shape[0]))

print(’{0:.2}% could not be found’.format(

not_found[not_found.Infection_upregulated == 1].shape[0]/dfDcon[dfDcon.Infection_upregulated == 1].shape[0]))

There are 1692 upregulated genes, of which 31 can’t be found in the names dictionary

0.018% could not be found

Great! So there’s almost no loss in our gene name conversion. Now we can go ahead and extract all the
IDs that we can find to use for our enrichment analysis

In [37]: translate= g(dfLum[dfLum.Infection_downregulated == 1][’SequenceNameGene’])

wbids= names[translate].WBID

In [38]: print(wbids.head())

2 WBGene00000003

4 WBGene00000005

5 WBGene00000006

19 WBGene00000021

36 WBGene00000038

Name: WBID, dtype: object

See how the list changed from before? Great! Now we can put this into TEA

3 Calling TEA

TEA works by comparing your gene-list to a reference tissue expression ‘’dictionary”. In order for us to run
TEA, we first need to fetch the dictionary. That’s done easily enough:

In [33]: tissue_df= tea.fetch_dictionary() #this downloads the tissue dictionary we want

In [35]: tissue_df.head()

Out[35]: wbid ray 2 WBbt:0006945 Cpapa WBbt:0005962 \
0 WBGene00003681 0.0 0.0

1 WBGene00000023 0.0 0.0

2 WBGene00022837 0.0 0.0

3 WBGene00003905 0.0 0.0

4 WBGene00003983 0.0 0.0

ABarappa WBbt:0006005 ABprpppap WBbt:0006237 Cpaaa WBbt:0006212 \
0 0.0 0.0 0.0

1 0.0 0.0 0.0

2 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

pm6 WBbt:0003724 ventral nerve cord WBbt:0005829 ABalpaap WBbt:0005934 \

5

0 0.0 0.0 0.0

1 0.0 0.0 0.0

2 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

retrovesicular ganglion WBbt:0005656 ... \
0 0.0 ...

1 0.0 ...

2 0.0 ...

3 0.0 ...

4 0.0 ...

ABprpappa WBbt:0006088 MSaapp WBbt:0006425 \
0 0.0 0.0

1 0.0 0.0

2 0.0 0.0

3 0.0 0.0

4 0.0 0.0

thermosensory neuron WBbt:0005838 postdeirid sensillum WBbt:0005471 \
0 0.0 0.0

1 0.0 0.0

2 0.0 0.0

3 0.0 0.0

4 0.0 0.0

ABprappp WBbt:0006702 AWA WBbt:0005670 ray 9 WBbt:0006954 \
0 0.0 0.0 0.0

1 0.0 0.0 0.0

2 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

ABprappaa WBbt:0006350 nociceptor neuron WBbt:0008434 \
0 0.0 0.0

1 0.0 0.0

2 0.0 0.0

3 0.0 0.0

4 0.0 0.0

ABpraapa WBbt:0006302

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

[5 rows x 261 columns]

Quick technical note: We could have placed the dictionary inside the other functions and call them from
the inside, but we want you to be able to access the dictionary. Why? Well, you might imagine that you
want to get all the genes that are specifically expressed in a tissue, or you may want to take a look at what
tissues are included, etc. . .

6

In other words, we want you to be able to get your hands on this data! It’s up to date, it’s easy and it
works beautifully.

Now that we have the dictionary, we can run the enrichment analysis. Just so you know what’s going on
when you call it, the function has the following args.:

enrichment analysis(gene list, tissue df, alpha= 0.05, aname= ”, save= False, show= True)
Most of these you can ignore. Mainly, you’ll want to assign:
gene list = your gene list
tissue df = the result from fetch dictionary()
alpha= your desired q-value threshold
aname= if you want to save the result to your python interpret, give it a name and complete

path
save= if you want to save your file, you must set this to True
This function returns 2 things:
df res – a dataframe with all the results
unused – a list of all the genes that were discarded from the analysis
For now, let’s jsut run the analysis and show it here:

In [39]: df_res, unused= tea.enrichment_analysis(wbids, tissue_df, show= True, save= False)

Executing script

Tissue Expected Observed \
0 posterior lateral ganglion WBbt:0005465 20.460474 37.0

5 PDE WBbt:0006747 5.416008 14.0

6 AIY WBbt:0005413 9.267391 21.0

7 lateral ganglion WBbt:0005105 61.140711 88.0

9 NSM WBbt:0003666 5.897431 15.0

8 postdeirid sensillum WBbt:0005471 5.897431 14.0

11 SDQL WBbt:0004993 4.332806 11.0

2 SDQR WBbt:0004991 4.453162 11.0

4 cephalic sensillum WBbt:0006920 5.656719 13.0

10 AQR WBbt:0003927 3.971739 10.0

13 AWB WBbt:0005671 8.906324 18.0

12 PQR WBbt:0004096 6.739921 14.0

1 AWA WBbt:0005670 5.536364 12.0

3 anal sphincter muscle WBbt:0005798 15.525889 26.0

Enrichment Fold Change Q value

0 1.808365 0.016980

5 2.584930 0.016980

6 2.266010 0.016980

7 1.439303 0.016980

9 2.543480 0.016980

8 2.373915 0.018099

11 2.538770 0.024781

2 2.470155 0.028501

4 2.298152 0.028501

10 2.517789 0.028501

13 2.021036 0.028501

12 2.077176 0.041767

1 2.167488 0.045186

3 1.674622 0.046300

Voila! We got our results. Great! But what if we didn’t want to show them?’

7

In [40]: df_res, unused= tea.enrichment_analysis(wbids, tissue_df, show= False, save= False)

Executing script

We could still look at the results by typing df res.head():

In [41]: df_res.head()

Out[41]: Tissue Expected Observed \
0 posterior lateral ganglion WBbt:0005465 20.460474 37.0

5 PDE WBbt:0006747 5.416008 14.0

6 AIY WBbt:0005413 9.267391 21.0

7 lateral ganglion WBbt:0005105 61.140711 88.0

9 NSM WBbt:0003666 5.897431 15.0

Enrichment Fold Change Q value

0 1.808365 0.01698

5 2.584930 0.01698

6 2.266010 0.01698

7 1.439303 0.01698

9 2.543480 0.01698

What about the unused genes? Let’s see how many of those there are:

In [42]: print(’{0} were discarded from the analysis’.format(len(unused)))

4451 were discarded from the analysis

Ouch! That’s a lot! Don’t like it? Make GFP reporters and let WormBase know where they are expressed.
Seriously. Do it! You’d be helping the whole community a lot!

Now let’s plot the results

In [43]: tea.plot_enrichment_results(df_res, title= ’Exercise’, save= False)

Out[43]: <matplotlib.axes. subplots.AxesSubplot at 0x11ab54160>

8

Voila! We’ve analyzed our data! Yay! :D
If we wanted to save our plot, we would type:

In []: tea.plot_enrichment_results(df_res, title= ’Exercise’, save= True, dirGraphs= ’example_graph_dir/’)

#This will save the graph in the corresponding directory. If no directory is specified, the graphs will be saved

#to the current working directory.

9

	An IPython Introduction to Using TEA for C. elegans researchers
	Best of Luck!

	Introduction
	What is TEA meant for?
	How is TEA different from GO?
	What TEA is not:
	What do you need to do to run this tool?

	Batch users:

	Calling TEA

